If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2+2=41
We move all terms to the left:
9p^2+2-(41)=0
We add all the numbers together, and all the variables
9p^2-39=0
a = 9; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·9·(-39)
Δ = 1404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1404}=\sqrt{36*39}=\sqrt{36}*\sqrt{39}=6\sqrt{39}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{39}}{2*9}=\frac{0-6\sqrt{39}}{18} =-\frac{6\sqrt{39}}{18} =-\frac{\sqrt{39}}{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{39}}{2*9}=\frac{0+6\sqrt{39}}{18} =\frac{6\sqrt{39}}{18} =\frac{\sqrt{39}}{3} $
| 10u+12=42 | | 6x+242=14x-4 | | 20=11+3r | | q-17q-16q+2q=-16 | | 2d+2.51=19.79 | | 5(w+4)-4^2=39 | | P+15p-19p-7=17 | | 5-(10+n)=15 | | 10+x=2(2+2x) | | -28=n+13 | | 14m=28. | | 9c-8c=18 | | -6(b-1)=4b-23 | | .5x+1.3=9.3 | | -19k-4K-9=14 | | -6+9p=3p | | -4x+4=2-3 | | –3.12=w3− 5.28 | | 17x+5=12x+35 | | /7x+14=28 | | 9d-6d+2d+1=16 | | 2-(3x)=41 | | -38=4x+7x+6 | | -g=-9g+8g | | 4j-9j=50 | | -8n-10=10-4n | | 7b-2b=5b | | 12x-30=51+3x | | 7w+5w-11w=20 | | -12=4(-5+p) | | 2r=-8r+10r | | 6p5p=30 |